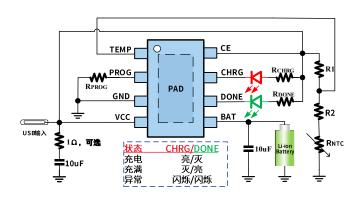


输入高耐压 1A 线性锂电池充电管理芯片

Check for Samples: LGS4056H

特性

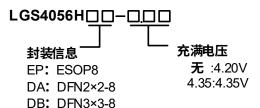

NEW 内置支持输入高耐压电流可调节的线性充电器:

- 内置 24V 功率管,可承受高达 28V 的浪涌电压
- 恒流下最大充电电流可达 1A,支持外部电阻实时 配置充电电流
- 兼容 5V USB 功率源和 AC 适配器,并提供热插拔保护
- 支持 4.2V/4.35V 锂电池类型(默认不带后缀为 4.2V 版本)
- 预设 4.2V±1%充电浮充电压
- 根据电池温度和输入电压智能调节充电电流
- 具有电池防倒灌功能,电池端漏电 1uA 以下
- 集成充电和充满提示,以及电池未连接指示
- 完善的保护:输入过压,输入欠压,充电电流热调节,芯片热保护,恒流充电软启动
- 结温范围为-40°C至+85°C
- 所有端口都具备±3000V(HBM)ESD 保护

应用

- 移动多媒体设备、MP3、MP4
- 带有锂电池供电和 USB 输入的便携式设备

典型应用拓扑

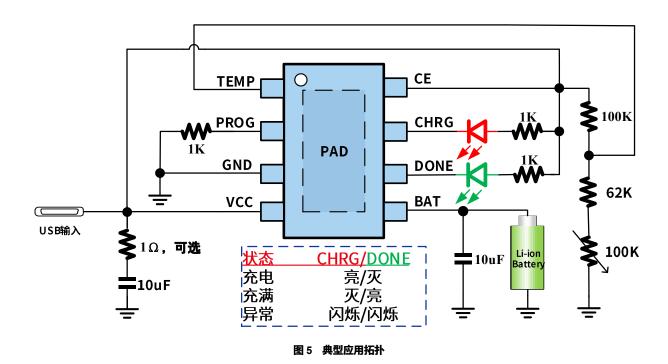

描述

LGS4056H 是一款集成锂电池充电管理、电池充电状态指示的线性锂电池充电管理芯片,为单节锂电池提供完整的电源解决方案。LGS4056H 具有短路(SC)、涓流(TC)、恒流(CC)和恒压(CV)四种充电过程:短路充电(SC)可对 0V 的电池充电;涓流充电(TC)可预充电恢复完全放电的电池;恒流充电(CC)可快速的对电池充满;恒压充电(CV)可确保安全的充满电池。

LGS4056H 充电截止电压默认为 4.2V,充电电流可通过外部电阻进行设置,最大充电电流 1A。电流降至设定值的 1/10 时,LGS4056H 将自动结束充电过程,并持续检测电池电压,下降到一定阈值时自动再充电。当输入电源(USB 源或 AC 适配器)拿掉后,自动进入低功耗模式,电池端漏电在 1uA 以下。

LGS4056H 集成充电和充满提示,以及电池未连接指示。

采购信息


Part	Package
LGS4056HEP	ESOP8
LGS4056HDA	DFN2x2-8
LGS4056HDB	DFN3x3-8

产品数据信息截止到手册发布日期。参数规格以最新版本信息为准。如有更改恕不另行通知。

www.Legend-Si.com

应用信息: 典型应用电路

NOTE:

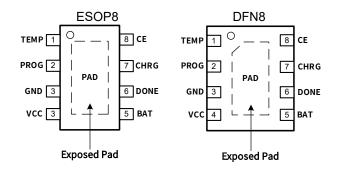
- 充电输入引脚 VCC。需 10μF 稳压陶瓷电容,但由于某些启动条件下,有可能产生极高的瞬态电压信号,增加一个与陶瓷电容串联 1Ω电阻器,将最大限度地减小启动电压瞬态信号,非必须,可选。
- NTC 功能不使用,将 TEMP 引脚接地。NTC 电阻一般位于电池内部,也可位于外部。典型应用中使用 B 值为 4250K 的 100K 阻值的 NTC 电阻与 62K 电阻器串联再与 100K 电阻器串联接于 VCC 到地,此搭配可保证电池在 0°C以下和 60°C以上关闭充电,保护电池。如使用其他搭配或其他模型,请参照第八页电池温度检测功能说明进行合理设计或可咨询我司的 FAE,他们会给出合理的建议搭配。注意:由于 VCC 引脚是一个高压引脚,而 TEMP 引脚是通过 VCC 分压电阻到地的,需保证 VCC 和 TEMP 引脚之间的电阻应大于 10K 以上,这样能保证在 VCC 承受高压时,由于 TEMP 回路电流被限流,TEMP 电位钳在安全电压。
- 对芯片底部散热焊盘,应使用较大覆铜区域连接到 PCB 地平面,这有助于最大限度的减小 PCB 传导损耗和热应力,防止因芯片温度过高导致的 充电电流下降
- LED 指示灯使用时推荐接 1K 限流电阻到 VCC。不使用充电指示功能,需要将对应的引脚接地。如果 CHRG 和 DONE 通过电阻接在其他电源上,要保证 VCC 上电时该电源不会有脉冲或者波动,DONE 引脚在启动 VCC 上电时如果有脉冲会导致系统不能工作。

元器件选型推荐

符号	含义	要求
C _{VCC}	USB 充电输入稳压电容	10μF(有效值)陶瓷电容
Сват	电池充电输出稳压电容	10μF(有效值)陶瓷电容
RCHRG RDONE	LED 限流电阻	根据灯的亮度需求选择,1K 以上
R _{PROG}	恒流充电电流设置电阻	精度: 1%,由公式 $I_{BAT}=$
		$(V_{PROG}/R_{PROG}) imes 1000$ 设定完成。
R _{NTC}	NTC 热敏电阻	100K,B 值: 4250K,精度: 1%

棱晶半导体(南京)有限公司 www.Legend-Si.com

绝对最大值 (†)


表 3.1

参数	范围		
引脚至 GND 电压(VCC,CHRG	-0.3V~28V		
DONE, CE)			
引脚至 GND 电压(BAT,TEMP	-0.3V~6V		
PROG)			
储存温度	-65°C to 150°C		
工作温度	-40°C to 125°C		
ESD 额定值(HBM)	±2000V		
ESD 额定值(CDM)	±1000V		

🕇 注: 如果器件工作条件超过上述"绝对最大值",可能引起器件永 久性损坏。这仅是极限参数,不建议器件在极限值或超过上述极限值的 条件下工作。器件长时间工作在极限条件下可能会影响其可靠性。

引脚排列

图 3. 引脚排列

ESD(静电放电) 敏感器件。

带电器件和电路板可能会在没有察觉的情况下放电。尽管 本产品具有专利或专有保护电路,但在遇到高能量 ESD 时,器件可能会损坏。因此,应当采取适当的 ESD 防范 措施,以避免器件性能下降或功能丧失。

表 3.2 引脚功能描述

引脚编号	引脚名称	说明
		电池温度检测引脚。将 TEMP 管脚接到电池的 NTC 传感器的输出端。如果 TEMP 管脚的
1	TEMP	电压小于输入电压的 45%或者大于输入电压的 80%,意味着电池温度过高或过低,则充电
		被暂停。如果 TEMP 引脚接地,电池温度检测功能取消,其他充电功能正常。
		恒流充电电流设置和充电电流监测引脚。外部连接 1%精度电阻器到地来设置充电电流。
2	PROG	300mA 以上设置公式: $I_{BAT} = 1000/R_{PROG}$, 300mA 以下设置为 $I_{BAT} = 900/R_{PROG}$ 。举例:
		1K 对应 1A 充电; 2K 对应 0.5A 充电; 9K 对应 0.1A 充电。
3	GND	芯片地。
4	VCC	电源输入引脚。连接至电源正极,使用至少10uF有效值的陶瓷电容尽量近旁路VCC和GND。
5	BAT	电池充电输出引脚。连接至电池正极,放置至少 10uF 有效值的陶瓷电容器到地。
6	DONE	充满指示引脚。连接至 LED 灯负极,电池充满时,引脚输出低电平,指示灯亮。
7	CHRG	充电指示引脚。连接至 LED 灯负极,电池充电时,引脚输出低电平,指示灯亮。
8	CE	使能输入引脚。连接至 VCC 或 MCU 控制,高电平使能充电,低电平关闭充电。
EP	PAD	封装底部散热焊盘,可与芯片 GND 连接到一起,连接到大的覆铜平面,达到较好的散热。

技术规格

除非有特殊说明,以下数据仅代表 $T_J=25^{\circ}$ C时最可能的参数规范,仅供参考。所有电压都是相对于 GND。最小和最大限值通过试验,验证和统计相关性规定。

表4.

参数		测试条件	最小值	典型值	最大值	单位
充电特性(Linear Charger)					
Vcc	推荐输入工作电压			5		V
	输入欠压锁定	Rising,V _{BAT} =3V,EN=1		4.0		V
		Falling,V _{BAT} =3V,EN=1		3.9		V
V_{OVP}	输入过压保护			6.5		V
IQ	静态电流 VCC 电流	VCC=5V,EN=1,BAT 悬空		150		μΑ
	VCC 电流	VCC=5V,EN=0,BAT 悬空		40		μΑ
	BAT 电流	VCC=0V,V _{BAT} =4.0V		500	1000	nA
I _{SHORT} (1)	短路充电(SC)电流	V _{BAT} <v<sub>SHORT</v<sub>		5%	7%	Icc
V _{SHORT}	短路充电(SC)阈值电压	小于此阈值		0.6		V
V _{SHORT_HYS}	短路充电(SC)迟滞电压			0.1		V
I _{TC} (1)	涓流充电(TC)电流	V _{SHORT} <v<sub>BAT<v<sub>PRE</v<sub></v<sub>		10%	14%	Icc
V_{TC}	涓流充电(TC)阈值电压	小于此阈值	2.65	2.90	3.15	V
$V_{\text{TC_HYS}}$	涓流充电(TC)迟滞电压			0.5		V
Icc (1)	恒流充电(CC)(V _{BAT} =3.7V)	R _{PROG} =1K		1000		mA
		R _{PROG} =1.2K		800		mA
		R _{PROG} =2K		500		mA
		R _{PROG} =9K		100		mA
V_{CV} (1)	恒压充电(CV)浮充电压	T _J =25° C		4.20		V
I _{TERM}	恒压充电(CV)截止充电电流			1/10		Icc
V_{RECHRG}	电池充满后再充电阈值			95.7%		Vcv
R _{DS(ON)}	PMOS R _{DS(ON)}			1200		mΩ
控制逻辑信	号					
V_{CE}	CE 高电平输入电压	CE Rising		1.37		V
	CE 低电平输入电压	CE Falling		1.16		V
全局热保护	 及电池温度控制特性					
V _{TEMP-H} (2)	电池过热 NTC 阈值	小于此阈值,过热		45%		VCC
V _{TEMP-L} (2)	电池过冷 NTC 阈值	大于此阈值,过冷		80%		VCC
	关闭 NTC 功能	NTC 引脚浮空或接地				
T _{OTP}	过温保护	TJ		150		°C
指示灯(LE	ED)					
I _{CHRG}	LED 驱动电流			5		mA
I _{DONE}	LED 驱动电流			5		mA

⁽¹⁾ 在充电过程中为了保护电池,芯片会检测电池电压执行四个不同的充电阶段,短路充电(Short Charge)→涓流充电(trickle charge)→恒流充电

棱晶半导体(南京)有限公司 www.Legend-Si.com

(Const Current Charge) →恒压充电 (Const Voltage Charge) →充电停止。

(2) 电池温度控制,芯片会检测 TEMP 引脚上电压来判断电池的温度。其中使用的 NTC 电阻一般位于电池内部。NTC 典型应用中使用电池内置的 NTC 电阻与电阻 R2 串联再与 R1 电阻串联接于 VCC 到地。可根据 NTC 冷热阈值使用其他搭配,请参照 NTC 电压温度阈值的进行设计。

功能框图

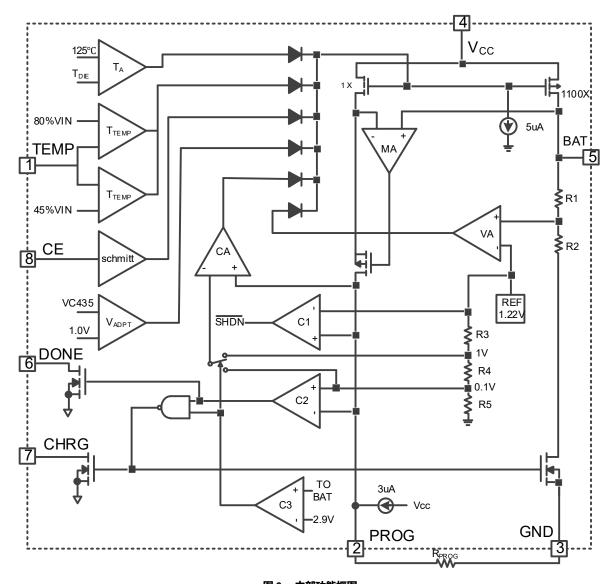
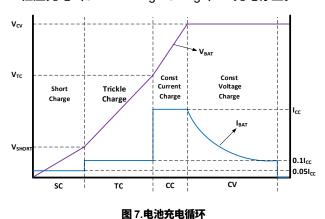


图 6. 内部功能框图

应用信息:线性锂电池充电管理芯片(充电概述)

概述


LGS4056H 是一款集成锂电池充电管理、电池充电状态指示的锂电池线性充电管理芯片,为单节锂电池提供完整的充电解决方案。LGS4056H 具有短路(SC)、涓流(TC)、恒流(CC)和恒压(CV)四种充电过程:短路充电(SC)可对 0V 的电池充电;涓流充电(TC)可预充电恢复完全放电的电池;恒流充电(CC)可快速的对电池充满;恒压充电(CV)可确保安全的充满电池。

LGS4056H 充电截止电压默认为 4.2V,充电电流可通过外部电阻进行设置,最大充电电流 1A。当充电电流降至设定值的 1/10 时,LGS4056H 将自动结束充电过程,然后持续检测电池电压,下降到一定阈值时自动再充电。当输入电源(USB 源或 AC 适配器)拿掉后,自动进入低功耗模式,电池端漏电在 1uA 以下。LGS4056H 集成充电和充满提示,以及电池未连接指示。

正常充电循环

在 LGS4056H 的 VCC 电压大于 UVLO,等待芯片内部 电源启动完成后,随后开始一个充电循环。

在充电过程中为了保护电池,芯片会检测电池电压执行不同的充电阶段,短路充电(Short Charge)→涓流充电(trickle charge)→恒流充电(Const Current Charge)→恒压充电(Const Voltage Charge)→充电停止。

当 BAT 上的电压低于 V_{SHORT}(典型值 0.6V),为防止深度 放电的锂离子电池在快充时被损坏甚至发生危险,此阶段 会用 5%预设充电电流进行唤醒。

当 BAT 上的电压低于 VTC(典型值 2.9V)大于 VSHORT(典型值 0.6V)时,充电池会进入涓流充电模式(也称锂电池的预充电模式)对电池单元进行恢复性充电,在这个模式下,充电电流会被减少到 10%预设充电电流。

当电池电压上升到 V_{PRE}(典型值 2.9V)以上时,充电电流 会上升至全速预设电流进行恒流充电模式。

当达到预设充电电压 Vcv (4.2V), LGS4056H 会进入恒压充电,充电电流开始下降,直至降到 ITERM(典型值 1/10 Icc),则停止充电。

停止充电后,芯片进入待机状态,会持续检测 BAT 电压。 当 BAT 电压下降到 V_{RECHRG} (再充电阈值 4V),会自动进入新的充电循环,从而保证电池处于满电水平。

设定输出电流

LGS4056H 充电电流可通过连接在 PROG 引脚与地之间的电阻器来设定的。根据需要的充电电流来确定电阻器的阻值。充电过程的所有模式下,都可以通过测量此管脚的电压来估算充电电流。300mA 以上设置公式:

 $I_{BAT}=1000/R_{PROG}$,300mA 以下设置为 $I_{BAT}=900/R_{PROG}$ 。举例:1K 对应 1A 充电;2K 对应 0.5A 充电;9K 对应 0.1A 充电。

要达到 1A 充电需要输入输出压差大于 1.2V 和散热足够, 才可保持最大电流充电。

CE 控制充电

在充电循环中的任何时刻都能通过置 CE 端为低电位来 把 LGS4056H 置于停机模式。这使得电池漏电流降至 1 μA 以下,且电源电流降至 40μA 以下。重新将 CE 端 置为高电位可启动一个新的充电循环。

应用信息:线性锂电池充电管理芯片(充电概述)

充电状态指示灯

LGS4056H 集成充电和充满提示,以及电池未连接三种 充电状态指示。电池未连接时, LED 灯会进入闪烁报警 状态。LGS4056H有两个漏极开路状态输出端: CHRG 和 DONE,当充电进行时,CHRG 被拉到低电平,DONE 为高阻态; 充电结束后, CHRG 为高阻态, DONE 被拉 到低电平。 如果不使用状态指示功能时,将不用的状 态指示输出端接地。DONE 引脚在 VCC 上电时不能有 脉冲。

充电状态	CHRG 灯	DONE
正在充电	亮	灭
充电完成	灭	亮
电池未接	闪烁	亮
欠压、温度过高或者过低	灭	灭

封装的热考虑

ESOP8 封装的外形尺寸很小,因此,需要采用一个热设 计精良的 PCB 板布局以最大幅度地增加可使用的充电电 流,这一点非常重要。用于耗散 IC 所产生的热量的散热 通路从芯片至引线框架,并通过底部的散热片到达 PCB 板覆铜面。PCB 板覆铜面为散热器。散热片相连的铜箔面 积应尽可能地宽阔,并向外延伸至较大的铜面积,以便将 热量散播到周围环境中。至内部或背部铜电路层的通孔在 改善充电器的总体热性能方面也是颇有用处的。当进行 PCB 板布局设计时,电路板上与充电器无关的其他热源也 是必须予以考虑的,因为它们将对总体温升和最大充电电 流有所影响。

过热调节充电电流

LGS4084H 在充电过程中内置的过温度环路能够有效 调节充电电流,通过降低充电电流,从而让芯片的结温 不会过高,避免芯片温度的持续增加。这也意味着恒流 模式下充电电流未必是设置的 Icc,将受制于温度。该 功能允许用户提高给定电路板功率处理能力的上限而 没有损坏 LGS4084H 的风险。在保证充电器将在最坏 情况条件下自动减小电流的前提下,可根据典型(而不 是最坏情况)环境温度来设定充电电流。

高压热插拔

如果整体方案中 USB 接口上电时可以看到高于输入 VCC 耐压的尖峰,可以在 VCC 电容上串入 1Ω电阻来 过滤尖峰。

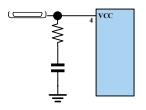


图 5.c Type-C 高压接口热插拔

NTC 电阻选型(串联型)

为了防止温度过高或者过低对电池造成的损害, LGS4056H 内部集成有电池温度监测电路。电池温度监 测是通过监测 TEMP 管脚的电压实现的, TEMP 管脚 的电压由电池内的 NTC 热敏电阻和一个电阻分压网络 实现,如典型应用电路或下图所示。LGS4056H 将 TEMP 管脚的电压同芯片内部的两个阈值 VTEMP-H 和 V_{TEMP-L} 相比较,以确认电池的温度是否超出正常范围。 VTEMP-H=45%×VCC, VTEMP-L=80%×VCC。如果 TEMP 管 脚电压 VTEMP<VTEMP-H (电池过热) 或者 VTEMP>VTEMP-L (电池过冷), 充电过程将被终止; 如果不需要电池温 度监测功能,则须将 TEMP 管脚接地即可。

举例:通过下图的电阻选择将电池温度过低阈值设置为 0°C,温度过高阈值设置为 60°C

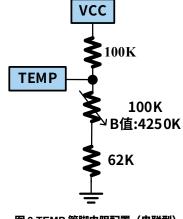


图 8.TEMP 管脚电阻配置(串联型)

棱晶半导体(南京)有限公司 www.Legend-Si.com

应用信息:NTC 电阻选型(并联型)

为防止温度过高或过低对电池造成的伤害,LGS4056H 通过测量 NTC 电压来监测电池温度。当速率 K(K=V_{NTC}/V_{DD})达到 UTP(K_{UT})或 OTP(K_{OT})阈值时,控制器触发 UTP 或 OTP。如果 NTC 管脚的电压小于 V_{DD} 电压的 45%或者大于 V_{DD} 电压的 80%,意味着电池温度过高或过低,则充电被暂停。可兼容市面上常用 4056 的并联型温度传感网络如下图所示。选择 R2 和 R1 来编程合适的 UTP 和 OTP 温度阈值点。

计算步骤:

- 1、定义 Kut, Kut=73%~83%, 典型值 80%
- 2、定义 KoT, KoT=42%~48%, 典型值 45%
- 3、假设电池 NTC 热敏电阻在 UTP 阈值处为 Rut, 在 OTP 阈值处为 Rot。
- 4、计算 R1

$$R_{1} = \frac{R_{OT}R_{UT}(K_{UT} - K_{OT})}{(R_{UT} - R_{OT})K_{UT}K_{OT}}$$

5、计算 R2

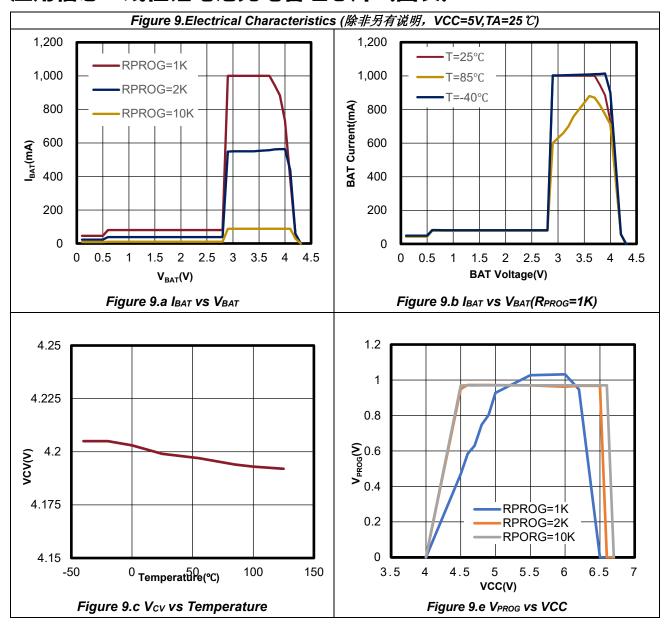
$$R_{2} = \frac{R_{OT}R_{UT}(K_{UT} - K_{OT})}{R_{OT}(K_{OT} - K_{OT}K_{UT}) - R_{UT}(K_{UT} - K_{OT}K_{UT})}$$

如果选择典型值 KUT=80%和 KOT=45%,则

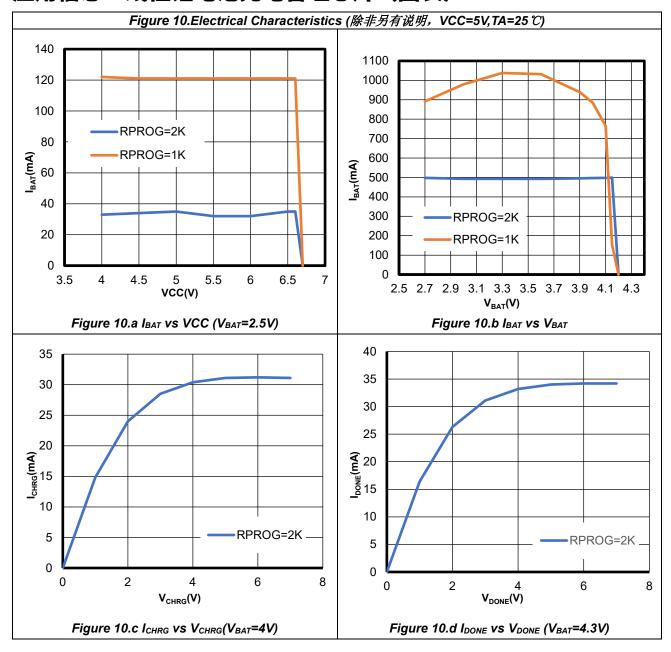
$$R_1 = \frac{0.97 R_{OT} R_{UT}}{(R_{UT} - R_{OT})}$$

$$R_2 = \frac{0.35R_{OT}R_{UT}}{0.09R_{OT} - 0.44R_{UT}}$$

我们选择市面


温度	R _{NTC}	电阻 B 值	R1	R2	模型
0℃~60℃	10K,精度 1%	3380K	3.9K	51K	0.91
0℃~60℃	100K,精度 1%	4250K	27K	180K	N 0.51
-10℃~60℃	10K,精度 1%	3380K	3.6K	24K	0.41 0 10 20 30 40 50 60 Temp.[degC]
0℃~45℃	10K,精度 1%	3380K	6.2K	330K	0.93
0℃~45℃	100K,精度 1%	4250K	47K	470K	0.73 0.63 0.53
0℃~45℃	10K,精度 1%	3380K	6.2K	ок	0.43 10 20 30 40 50 Temp.[degC]

棱晶半导体(南京)有限公司 www.Legend-Si.com


应用信息:线性锂电池充电管理芯片(图表)

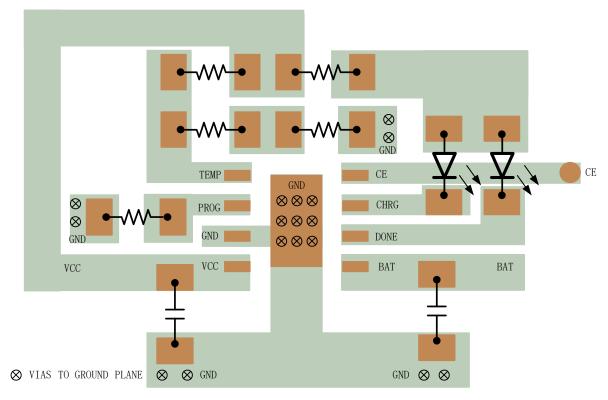
应用信息:线性锂电池充电管理芯片(图表)

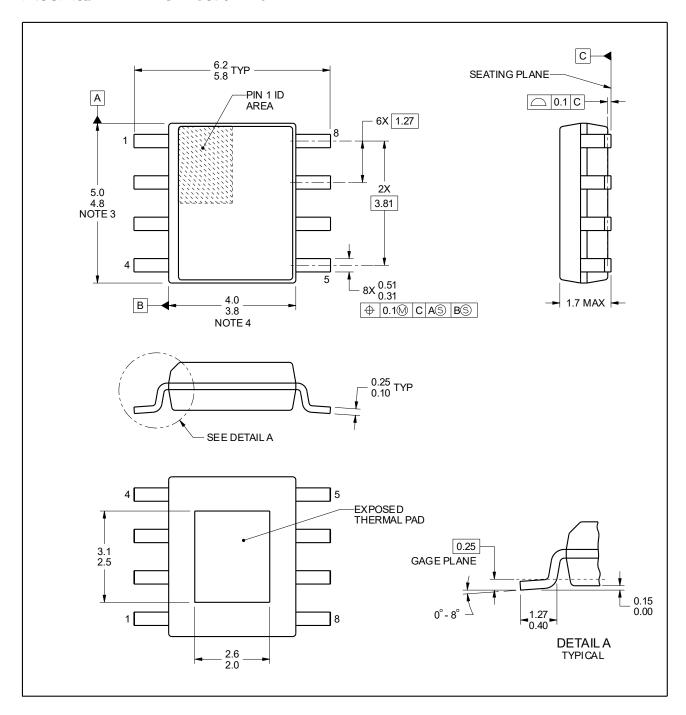
应用信息:参考布局举例

概述

较差的布局会影响 LGS4056H 的性能,造成电磁干扰(EMI)、电磁兼容性(EMC)差、地跳以及电压损耗,进而影响稳压调节和稳定性。为了优化其电气和热性能,应运用下列规则来实现良好的 PCB 布局布线,确保最佳性能:

- 输入电容 CIN 尽量近距离放在 VCC(PIN4)、 GND(PIN3)引脚旁边。为了尽量降低高频噪声,建 议在 BAT 端和 VCC 输入端陶瓷电容较近,布线十 分接近芯片引脚。
- 对高电流路径应使用较大 PCB 覆铜区域和焊盘直连方式,包括 GND 引脚(PIN3)。这有助于最大限度地减少 PCB 传导损耗和热应力。
- 为使过孔传导损耗最小并降低模块热应力,应使用 多个过孔来实现顶层和其他电源层或地层之间的 互连。(芯片底部焊盘加过孔开窗有助于芯片散热 提高性能)
- PROG 引脚阻抗较高,RPROG 在远离芯片的热源的情况下引线轨迹应尽量短,以减少对充电电流设置的干扰。

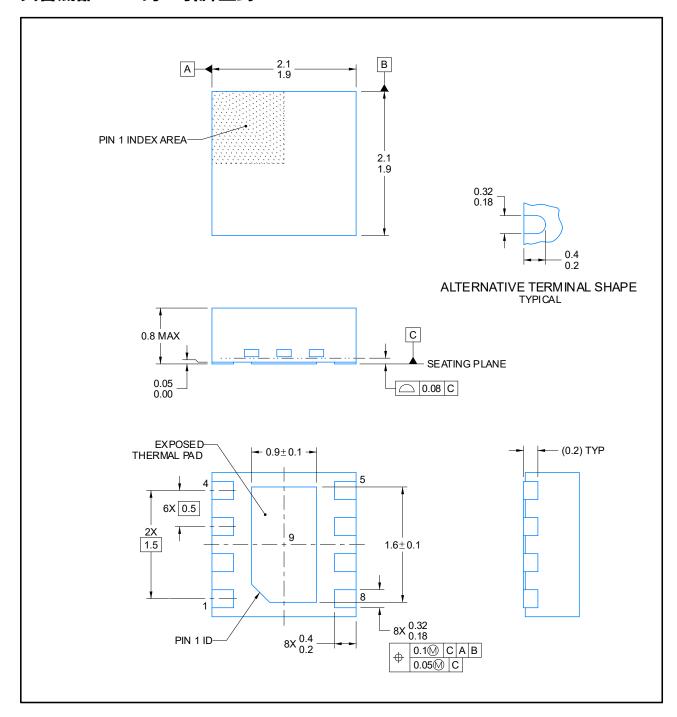



图 10 推荐 PCB 布局举例

棱晶半导体(南京)有限公司 www.Legend-Si.com

封装外形描述(ESOP8)

具备底部 EPAD 的 8 引脚塑封 SOIC

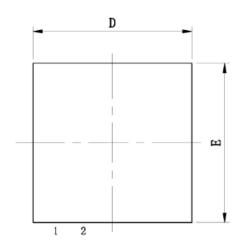

注:

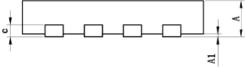
- (1) 所有的数据单位都是亳米,括号内的任何尺寸仅供参考。
- (2) 本图如有更改,恕不另行通知。
- (3) 此尺寸不包括塑模毛边,突起,或水口毛刺。
- (4) 此尺寸不包括塑模毛边。

封装外形描述(DFN8-2.0*2.0)

具备底部 PAD 的 8 引脚塑封

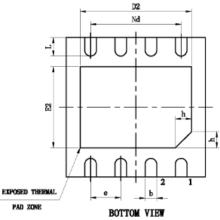
注:


- (1) 所有的数据单位都是亳米,括号内的任何尺寸仅供参考。
- (2) 本图如有更改,恕不另行通知。
- (3) 此尺寸不包括塑模毛边,突起,或水口毛刺。
- (4) 此尺寸不包括塑模毛边。


封装外形描述(DFN8-3.0*3.0)

具备底部 PAD 的 8 引脚塑封

♦ DFN8L(0303X0.75-0.65) POD

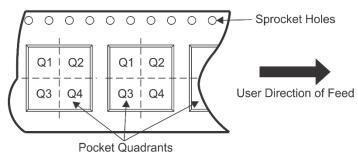

SYMBOL	MIN	NOM	MAX			
A	0.7	0.75	0.8			
A1	-	0.02	0.05			
ь	0.25	0.3	0.35			
с	0.18	0.2	0.25			
D	2.9	3.0	3.1			
D2	2.4	2.5	2.6			
е	0.65BSC					
Nd		1.95BSC				
Е	2.9	3.0	3.1			
E2	1.45	1.55	1.65			
L	0.3	0.4	0.5			
h	0.2	0.25	0.3			
L/F载体尺寸	106*75					
NIOTTEO						

NOTES: 1.All DIMENSIONS REFER TO JEDEC STANDARD MO-229 (VEEC-2/WEEC-2)

2.DIMENSION D DOES NOT INCLUDE MOLD FLASH 3.DIMENSION E1 DOSE NOT INCLUDE MOLD FLASH 4.FLASH OR PROTRUSION SHALL NOT EXCEED 0,25mm PER SIDE.

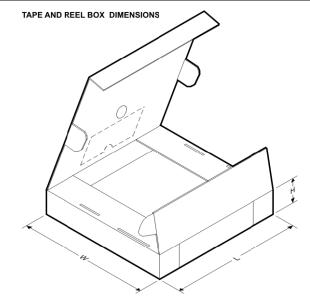
注:

- (5) 所有的数据单位都是亳米,括号内的任何尺寸仅供参考。
- (6) 本图如有更改,恕不另行通知。
- 此尺寸不包括塑模毛边,突起,或水口毛刺。 (7)
- (8) 此尺寸不包括塑模毛边。


TAPE AND REEL INFORMALEGEND-SION

REEL DIMENSIONS Reel Diameter Reel Width (W1)

TAPE DIMENSIONS KO P1 BO W Cavity AO


A0	
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*ALL dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1(mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LGS4056HEP	ESOP8	EP	8	4000	330	15	6	8	1.5	8	12	Q1
LGS4056HDA	DFN8-2*2	DA	8	3000	175	10	2.5	2.5	0.8	3.5	8	Q1
LGS4056HDB	DFN8-3*3	DB	8	4000	330	15	6	8	1.5	8	12	Q1

棱晶半导体(南京)有限公司 www.Legend-Si.com

免责声明

和 Legend-si 是棱晶半导体有限公司的商标,Legend-si 拥有多项专利、商标、商业机密和其他知识产权。Legend-si 对公司产品提供可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、技术支持和其他资源,但不就本司任何产品用于任何特定目的做出担保。Legend-si 不承担任何因产品的使用产生的责任,包括使用方须遵守的法律法规和安全使用标准。

对于在规格书中提到的产品参数,在不同的应用条件下实际性能可能会产生变化。任何参数的配置和使用必须经由客户的技术支持进行验证,对本文档所涉及的内容进行变更,恕不另行通知。Legend-si 对您的使用授权仅限于产品的应用,除此之外不得复制或展示所述资源,Legend-si 也不提供任何人或第三方机构的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、债务及任何损失,Legend-si 对此概不负责,并且您须赔偿由此对 Legend-si 造成的损害。

Legend-si 所提供产品均受 Legend-si 的销售条款以及 www.Legend-si.com 上或随附 Legend-si 产品提供的其他可适用条款的约束。Legend-si 提供所述资源并不扩展或以其他方式更改 Legend-si 针对 Legend-si 产品所发布的可适用的担保范围或担保免责声明。

Legend-si 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: 江苏省南京市浦口区江淼路 88 号腾飞大厦 C座 1403 室 电话: 15821104758

棱晶半导体(南京)有限公司

历史修订记录 (†)

Rev.C V1.0 16.Aug.2023	页码
※ 初始版本。	ALL
Rev.C V1.1 22.Sep.2023	页码
※ 修改。针对参数调整,添加 DFN3*3 封装,DONE 引脚使用注意事项。	ALL
Rev.C V1.2 22.Sep.2023	页码
※ 修改。针对参数调整,DONE 引脚使用注意事项。	ALL
Rev.C V1.3 21.Aug.2024	页码
※ 修改 DFN8(3*3) POD。	14

NOTE:以前版本的页码可能与当前版本的页码不同。